A **first-order first-degree differential equation** is a differential equation that is both a first-order differential equation and a first-degree differential equation.

A DE of the type $M + N \frac{dy}{dx} = 0$ where M and N are functions of x and y or constants is called a DE of 1st order and 1st degree.

Variables Separated From (V.S.F.)

Simply put, a differential equation is said to be **separable** if the variables can be separated. We can solve this by separating the equation into two parts. We move all of the equation involving the y variable to one side and all of the equation involving the x variable to the other side, then we can integrate both sides.

That is, a separable equation is one that can be written in the form

$$f(y) dy = g(x) dx$$

Once this is done, all that is needed to solve the equation is to integrate both sides.

Example 2:	$2ydy = (x^2 + 1)dx$
Solve DE $2ydy = (x^2 + 1)dx$	$\Rightarrow \int 2y dy = \int (x^2 + 1) dx$
Since this equation is already expressed in	
"separated" form, just integrate:	\Rightarrow y ² = $\frac{x^3}{c}$ + x + c
	\$ 3

Solve: $(e^{y} + 1) \cos x dx + e^{y} \sin x dy = 0$	$\Rightarrow \ln \sin x = \int -\frac{e^{y}}{1+e^{y}} dy$
Separating the variables the equation becomes	Put, $1 + e^{y} = z \Rightarrow e^{y} dy = dz$ then
$(e^{y} + 1) \cos x dx = -e^{y} \sin x dy$ $\Rightarrow \frac{\cos x}{\sin x} dx = -\frac{e^{y}}{1 + e^{y}} dy$ $\Rightarrow \cot x dx = -\frac{e^{y}}{1 + e^{y}} dy$ Then integrate we get, $\int \cot x dx = \int -\frac{e^{y}}{1 + e^{y}} dy$	$\ln \sin x = \int -\frac{dz}{z}$ $\Rightarrow \ln \sin x = -\ln z + c$ $\Rightarrow \ln \sin x = -\ln z + \ln c$ $\Rightarrow \ln \sin x = -\ln(1 + e^{y}) + \ln c$ [put ln c = c] $\Rightarrow \ln \sin x + \ln(1 + e^{y}) = \ln c$ $\Rightarrow \ln \{\sin x \ (1 + e^{y})\} = \ln c$ $\Rightarrow \sin x \ (1 + e^{y}) = c$

Exercise : Solve the following equations

(1) $\frac{y}{dx} = e^{x-y} + x^2 e^{-y}$ (V11) $\frac{y}{dx} = x e^{2y}$	
(ii) $\frac{dy}{dx} = e^{2x-3y} + x^2 e^{-3y}$ (viii) $\frac{dy}{dx} = 2x(1-y)^2$	
(iii) $e^{x-y}dx + e^{y-x}dy = 0$ (ix) $(e^y + 1)\cos x dx + e^y \sin x$	x dy = 0
(iv) $\sec^2 x \tan y dx +$ (x) $(y+1) \cos x dx - dy = 0$)
$\sec^2 y \tan x dy = 0$ (xi) $(y - 1) \sin x dx - dy = 0$	1
(v) $\left(y - \frac{dy}{dx}\right)x = y$ (vi) $y - x\frac{dy}{dx} = a(y^2 + \frac{dy}{dx})$ (xii) $(3 + 2\sin x + \cos x)dy = (xiii)$ (xiii) $(y - yx)dx + (x + xy)dy$ (xiv) $3e^x \tan y dx + (1 - e^{-x})s^{-x}$	$(1 + 2 \sin y + \cos y)dx$ y = 0 $\sec^2 y dy = 0$